Relaxing lockdown measures in epidemic outbreaks using selective socio-economic containment with uncertainty

G. Albi, L. Pareschi, M. Zanella

Preprint medrXiv, 2020

After an initial phase characterized by the introduction of timely and drastic containment measures aimed at stopping the epidemic contagion from SARS-CoV2, many governments are preparing to relax such measures in the face of a severe economic crisis caused by  lockdowns. Assessing the impact of such openings in relation to the risk of a resumption of the spread of the disease is an extremely difficult problem due to the many unknowns concerning the actual number of people infected, the actual reproduction number and infection fatality rate of the disease. In this work, starting from a compartmental model with a social structure, we derive models with multiple feedback controls depending on the social activities that allow to assess the impact of a selective relaxation of the containment measures in the presence of uncertain data. Specific contact patterns in the home, work, school and other locations for all countries considered have been used. Results from different scenarios in some of the major countries where the epidemic is ongoing, including Germany, France, Italy, Spain, the United Kingdom and the United States, are presented and discussed. 

Control with uncertain data of socially structured compartmental epidemic models

G. Albi, L. Pareschi, M. Zanella

Preprint arXiv, 2020.

The adoption of containment measures to reduce the amplitude of the epidemic peak is a key aspect in tackling the rapid spread of an epidemic. Classical compartmental models must be modified and studied to correctly describe the effects of forced external actions to reduce the impact of the disease. In addition, data are often incomplete and heterogeneous, so a high degree of uncertainty must naturally be incorporated into the models. In this work we address both these aspects, through an  optimal control formulation of the epidemiological model in presence of uncertain data. After the introduction of the optimal control problem, we formulate an instantaneous approximation of the control that allows us to derive new feedback controlled compartmental models capable of describing the epidemic peak reduction. The need for long-term interventions shows that alternative actions based on the social structure of the system can be as effective as the more expensive global strategy. The importance of the timing and intensity of interventions is particularly relevant in the case of uncertain parameters on the actual number of infected people. Simulations related to data from the recent COVID-19 outbreak in Italy are presented and discussed.