Kinetic-controlled hydrodynamics for traffic models with driver-assist vehicles

Andrea Tosin, Mattia Zanella

 Preprint arXiv, 2018.

We develop a hierarchical description of traffic flow control by means of driver-assist vehicles aimed at the mitigation of speed-dependent road risk factors. Microscopic feedback control strategies are designed at the level of vehicle-to-vehicle interactions and then upscaled to the global flow via a kinetic approach based on a Boltzmann-type equation. Then first and second order hydrodynamic traffic models, which naturally embed the microscopic control strategies, are consistently derived from the kinetic-controlled framework via suitable closure methods. Several numerical examples illustrate the effectiveness of such a hierarchical approach at the various scales.

 

Opinion modeling on social media and marketing aspects

Giuseppe Toscani, Andrea Tosin, Mattia Zanella

Physical Review E, 98(2): 022315, 2018. (Preprint arXiv)

We introduce and discuss kinetic models of opinion formation on social networks in which the distribution function depends on both the opinion and the connectivity of the agents. The opinion formation model is subsequently coupled with a kinetic model describing the spreading of popularity of a product on the web through a social network. Numerical experiments on the underlying kinetic models show a good qualitative agreement with some measured trends of hashtags on social media websites and illustrate how companies can take advantage of the network structure to obtain at best the advertisement of their products.

Related popularization article for the Italian blog Madd:Math!: La popolarità delle opinioni

 

 

Boltzmann games in heterogeneous consensus dynamics

Giacomo Albi, Lorenzo Pareschi, Mattia Zanella

Preprint arXiv, 2017.

We consider a constrained hierarchical opinion dynamics in the case of leaders’ competition and with complete information among leaders. Each leaders’ group tries to drive the followers’ opinion towards a desired state accordingly to a specific strategy. By using the Boltzmann-type control approach we analyze the best-reply strategy for each leaders’ population. Derivation of the corresponding Fokker-Planck model permits to investigate the asymptotic behaviour of the solution. Heterogeneous followers populations are then considered where the effect of knowledge impacts the leaders’ credibility and modifies the outcome of the leaders’ competition.

Particle based gPC methods for mean-field models of swarming with uncertainty

José Antonio Carrillo, Lorenzo Pareschi, Mattia Zanella.

Communications in Computational Physics, 25(2): 508-531, 2019. (Preprint arXiv)

In this work we focus on the construction of numerical schemes for the approximation of stochastic mean–field equations which preserve the nonnegativity of the solution. The method here developed makes use of a mean-field Monte Carlo method in the physical variables combined with a generalized Polynomial Chaos (gPC) expansion in the random space. In contrast to a direct application of stochastic-Galerkin methods, which are highly accurate but lead to the loss of positivity, the proposed schemes are capable to achieve high accuracy in the random space without loosing nonnegativity of the solution. Several applications of the schemes to mean-field models of collective behavior are reported.

 

See more videos on my YouTube channel.

Hybrid stochastic kinetic description of two-dimensional traffic dynamics

Michael Herty, Andrea Tosin, Giuseppe Visconti, Mattia Zanella

SIAM Journal on Applied Mathematics, 78(5): 2737–2762, 2018. (Preprint arXiv)

In this work we present a two-dimensional kinetic traffic model which takes into account speed changes both when vehicles interact along the road lanes and when they change lane. Assuming that lane changes are less frequent than interactions along the same lane and considering that their mathematical description can be done up to some uncertainty in the model parameters, we derive a hybrid stochastic Fokker-Planck-Boltzmann equation in the quasi-invariant interaction limit. By means of suitable numerical methods, precisely structure preserving and direct Monte Carlo schemes, we use this equation to compute theoretical speed-density diagrams of traffic both along and across the lanes, including estimates of the data dispersion, and validate them against real data.

Control strategies for road risk mitigation in kinetic traffic modelling

Andrea Tosin, Mattia Zanella. 

IFAC-PapersOnLine, 51(9): 67-72, 2018. (Preprint arXiv)

In this paper we present a Boltzmann-type kinetic approach to the modelling of road traffic, which includes control strategies at the level of microscopic binary interactions aimed at the mitigation of speed-dependent road risk factors. Such a description is meant to mimic a system of driver-assist vehicles, which by responding locally to the actions of their drivers can impact on the large-scale traffic dynamics, including those related to the collective road risk and safety.

Boltzmann-type models with uncertain binary interactions

Andrea Tosin, Mattia Zanella.

Communications in Mathematical Sciences, 16(4): 963-985, 2018. (Preprint arXiv)

In this paper we study binary interaction schemes with uncertain parameters for a general class of Boltzmann-type equations with applications in classical gas and aggregation dynamics. We consider deterministic (i.e., a priori averaged) and stochastic kinetic models, corresponding to different ways of understanding the role of uncertainty in the system dynamics, and compare some thermodynamic quantities of interest, such as the mean and the energy, which characterise the asymptotic trends. Furthermore, via suitable scaling techniques we derive the corresponding deterministic and stochastic Fokker-Planck equations in order to gain more detailed insights into the respective asymptotic distributions. We also provide numerical evidences of the trends estimated theoretically by resorting to recently introduced structure preserving uncertainty quantification methods.

Uncertainty quantification for kinetic models in socio-economic and life sciences

Giacomo Dimarco, Lorenzo Pareschi, Mattia Zanella  

Uncertainty Quantification for Hyperbolic and Kinetic Equations, Eds. S. Jin, L. Pareschi, SEMA-SIMAI Springer Series vol.14, Springer-Cham, 2017. (Preprint arXiv)

Kinetic equations play a major rule in modeling large systems of interacting particles. Recently the legacy of classical kinetic theory found novel applications in socio-economic and life sciences, where processes characterized by large groups of agents exhibit spontaneous emergence of social structures. Well-known examples are the formation of clusters in opinion dynamics, the appearance of inequalities in wealth distributions, flocking and milling behaviors in swarming models, synchronization phenomena in biological systems and lane formation in pedestrian traffic. The construction of kinetic models describing the above processes, however, has to face the difficulty of the lack of fundamental principles since physical forces are replaced by empirical social forces. These empirical forces are typically constructed with the aim to reproduce qualitatively the observed system behaviors, like the emergence of social structures, and are at best known in terms of statistical information of the modeling parameters. For this reason the presence of random inputs characterizing the parameters uncertainty should be considered as an essential feature in the modeling process. In this survey we introduce several examples of such kinetic models, that are mathematically described by nonlinear Vlasov and Fokker–Planck equations, and present different numerical approaches for uncertainty quantification which preserve the main features of the kinetic solution.

Structure preserving schemes for nonlinear Fokker-Planck equations and applications

Lorenzo Pareschi, Mattia Zanella

Journal of Scientific Computing, 74(3): 1575-1600, 2018. (Preprint arXiv)

In this paper we focus on the construction of numerical schemes for nonlinear Fokker-Planck equations that preserve the structural properties, like non negativity of the solution, entropy dissipation and large time behavior. The methods here developed are second order accurate, they do not require any restriction on the mesh size and are capable to capture the asymptotic steady states with arbitrary accuracy. These properties are essential for a correct description of the underlying physical problem. Applications of the schemes to several nonlinear Fokker-Planck equations with nonlocal terms describing emerging collective behavior in socio-economic and life sciences are presented

Recent advances in opinion modeling: control and social influence

Test3g_t5000Giacomo Albi, Lorenzo Pareschi, Giuseppe Toscani, Mattia Zanella                                                                         

Active Particles, Volulme 1. Advances in Theory, Models, and Applications, pp. 49-98, 2017. (Preprint arXiv)

We survey some recent developments on the mathematical modeling of opinion dynamics. After an introduction on opinion modeling through interacting multi-agent systems described by partial differential equations of kinetic type, we focus our attention on two major advancements: optimal control of opinion formation and influence of additional social aspects, like conviction and number of connections in social networks, which modify the agents’ role in the opinion exchange process.