Monte Carlo stochastic Galerkin methods for the Boltzmann equation with uncertainties: space-homogeneous case

Lorenzo Pareschi, Mattia Zanella

Journal of Computational Physics, to appear. (Preprint arXiv)

In this paper we propose a novel numerical approach for the Boltzmann equation with uncertainties. The method combines the efficiency of classical direct simulation Monte Carlo (DSMC) schemes in the phase space together with the accuracy of stochastic Galerkin (sG) methods in the random space. This  hybrid formulation makes it possible to construct methods that preserve the main physical properties of the solution along with spectral accuracy in the random space. The schemes are developed and analyzed in the case of space homogeneous problems as these contain the main numerical difficulties. Several test cases are reported, both in the Maxwell and in the variable hard sphere (VHS) framework, and confirm the properties and performance of the new methods.


Non-Maxwellian kinetic description of Follow-the-Leader traffic models

Andrea Tosin, Mattia Zanella

Preprint arXiv, 2019.

In this paper we consider a Boltzmann-type kinetic description of Follow-the-Leader traffic dynamics and we study the resulting asymptotic distributions, namely the counterpart of the Maxwellian distribution of the classical kinetic theory. In the Boltzmann-type equation we include a non-Maxwellian, viz. non-constant, collision kernel in order to exclude from the statistical model possibly unphysical interactions. In spite of the increased analytical difficulty caused by this further non-linearity, we show that a careful application of the quasi-invariant limit (an asymptotic procedure reminiscent of the grazing collision limit) successfully leads to a Fokker-Planck approximation of the original Boltzmann-type equation, whence stationary distributions can be explicitly computed. Our analytical results justify, from a genuinely model-based point of view, some empirical results found in the literature by interpolation of experimental data.

Reconstruction of traffic speed distributions from kinetic models with uncertainties

Michael Herty, Andrea Tosin, Giuseppe Visconti, Mattia Zanella

Preprint arXiv, 2019.

In this work we investigate the ability of a kinetic approach for traffic dynamics to predict speed distributions obtained through rough data. The present approach adopts the formalism of uncertainty quantification, since reaction strengths are uncertain and linked to different types of driver behaviour or different classes of vehicles present in the flow. Therefore, the calibration of the expected speed distribution has to face the reconstruction of the distribution of the uncertainty. We adopt experimental microscopic measurements recorded on a German motorway, whose speed distribution shows a multimodal trend. The calibration is performed by extrapolating the uncertainty parameters of the kinetic distribution via a constrained optimisation approach. The results confirm the validity of the theoretical set-up.

Model-based assessment of the impact of driver-assist vehicles using kinetic theory

Benedetto Piccoli, Andrea Tosin, Mattia Zanella

Zeitschrift für Angewandte Mathematik und Physik, 71:152, 2020.

In this paper we consider a kinetic description of follow-the-leader traffic models, which we use to study the effect of vehicle-wise driver-assist control strategies at various scales, from that of the local traffic up to that of the macroscopic stream of vehicles. We provide a theoretical evidence of the fact that some typical control strategies, such as the alignment of the speeds and the optimisation of the time headways, impact on the local traffic features (for instance, the speed and headway dispersion responsible for local traffic instabilities) but have virtually no effect on the observable macroscopic traffic trends (for instance, the flux/throughput of vehicles). This unobvious conclusion, which is in very nice agreement with recent field studies on autonomous vehicles, suggests that the kinetic approach may be a valid tool for an organic multiscale investigation and possibly design of driver-assist algorithms.


Kinetic modelling of multiple interactions in socio-economic systems

Giuseppe Toscani, Andrea Tosin, Mattia Zanella

Network & Heterogeneous Media, 15(3): 519-542, 2020. (Preprint arXiv)

Unlike the classical kinetic theory of rarefied gases, where microscopic interactions among gas molecules are described as binary collisions, the modelling of socio-economic phenomena in a multi-agent system naturally requires to consider, in various situations, multiple interactions among the individuals. In this paper, we collect and discuss some examples related to economic and gambling activities. In particular, we focus on a linearisation strategy of the multiple interactions, which greatly simplifies the kinetic description of such systems while maintaining all their essential aggregate features, including the equilibrium distributions.

Structure preserving schemes for Fokker-Planck equations with nonconstant diffusion matrices


Nadia Loy, Mattia Zanella

Mathematics and Computers in Simulation, to appear. (Preprint arXiv)

In this work we consider an extension of a recently proposed structure preserving numerical scheme for nonlinear Fokker-Planck-type equations to the case of nonconstant full diffusion matrices. While in existing works the schemes are formulated in a one-dimensional setting, here we consider exclusively the two-dimensional case. We prove that the proposed schemes preserve fundamental structural properties like nonnegativity of the solution without restriction on the size of the mesh and entropy dissipation. Moreover, all the methods presented here are at least second order accurate in the transient regimes and arbitrarily high order for large times in the hypothesis in which the flux vanishes at the stationary state. Suitable numerical tests will confirm the theoretical results.

Multiple-interaction kinetic modelling of a virtual-item gambling economy

Giuseppe Toscani, Andrea Tosin, Mattia Zanella

Physical Review E, 100(1): 012308, 2019.

In recent years, there has been a proliferation of online gambling sites, which made gambling more accessible with a consequent rise in related problems, such as addiction. Hence, the analysis of the gambling behaviour at both the individual and the aggregate levels has become the object of several investigations. In this paper, resorting to classical methods of the kinetic theory, we describe the behaviour of a multi-agent system of gamblers participating in lottery-type games on a virtual-item gambling market. The comparison with previous, often empirical, results highlights the ability of the kinetic approach to explain how the simple microscopic rules of a gambling-type game produce complex collective trends, which might be difficult to interpret precisely by looking only at the available data.


Uncertainty damping in kinetic traffic models by driver-assist controls

Andrea Tosin, Mattia Zanella

Mathematical Control and Related Fields, to appear. (Preprint arXiv)

In this paper, we propose a kinetic model of traffic flow with uncertain binary interactions, which explains the scattering of the fundamental diagram in terms of the macroscopic variability of aggregate quantities, such as the mean speed and the flux of the vehicles, produced by the microscopic uncertainty. Moreover, we design control strategies at the level of the microscopic interactions among the vehicles, by which we prove that it is possible to dampen the propagation of such an uncertainty across the scales. Our analytical and numerical results suggest that the aggregate traffic flow may be made more ordered, hence predictable, by implementing such control protocols in driver-assist vehicles. Remarkably, they also provide a precise relationship between a measure of the macroscopic damping of the uncertainty and the penetration rate of the driver-assist technology in the traffic stream.


Monte Carlo gPC methods for diffusive kinetic flocking models with uncertainties

José Antonio Carrillo, Mattia Zanella

Vietnam Journal of Mathematics, 47(4):931-954, 2019. (Preprint arXiv)

In this paper we introduce and discuss numerical schemes for the approximation of kinetic equations for flocking behavior with phase transitions that incorporate uncertain quantities. This class of schemes here considered make use of a Monte Carlo approach in the phase space coupled with a stochastic Galerkin expansion in the random space. The proposed methods naturally preserve the positivity of the statistical moments of the solution and are capable to achieve high accuracy in the random space. Several tests on a kinetic alignment model with self propulsion validate the proposed methods both in the homogeneous and inhomogeneous setting, shading light on the influence of uncertainties in phase transition phenomena driven by noise such as their smoothing and confidence bands.


Structure preserving stochastic Galerkin methods for Fokker-Planck equations with background interactions

Mattia Zanella

Mathematics and Computers in Simulation,  168:28-47, 2020. (Preprint arXiv)

This paper is devoted to the construction of structure preserving stochastic Galerkin schemes for Fokker-Planck type equations with uncertainties and interacting with an external distribution called the background. The proposed methods are capable to preserve physical properties in the approximation of statistical moments of the problem like nonnegativity, entropy dissipation and asymptotic behaviour of the expected solution. The introduced methods are second order accurate in the transient regimes and high order for large times. We present applications of the developed schemes to the case of fixed and dynamic background distribution for models of collective behaviour.