Mean-field control variate methods for kinetic equations with uncertainties and applications to socio-economic sciences

L. Pareschi, T. Trimborn, M. Zanella

Preprint arXiv, 2021.

In this paper, we extend a recently introduced multi-fidelity control variate for the uncertainty quantification of the Boltzmann equation to the case of kinetic models arising in the study of multiagent systems. For these phenomena, where the effect of uncertainties is particularly evident, several models have been developed whose equilibrium states are typically unknown. In particular, we aim to develop efficient numerical methods based on solving the kinetic equations in the phase space by Direct Simulation Monte Carlo (DSMC) coupled to a Monte Carlo sampling in the random space. To this end, exploiting the knowledge of the corresponding mean-field approximation we develop novel mean-field Control Variate (MFCV) methods that are able to strongly reduce the variance of the standard Monte Carlo sampling method in the random space. We verify these observations with several numerical examples based on classical models , including wealth exchanges and opinion formation model for collective phenomena.

Kinetic derivation of Aw-Rascle-Zhang-type traffic models with driver-assist vehicles

G. Dimarco, A. Tosin, M. Zanella

Preprint arXiv, 2021.

In this paper, we derive second order hydrodynamic traffic models from kinetic-controlled equations for driver-assist vehicles. At the vehicle level we take into account two main control strategies synthesising the action of adaptive cruise controls and cooperative adaptive cruise controls. The resulting macroscopic dynamics fulfil the anisotropy condition introduced in the celebrated Aw-Rascle-Zhang model. Unlike other models based on heuristic arguments, our approach unveils the main physical aspects behind frequently used hydrodynamic traffic models and justifies the structure of the resulting macroscopic equations incorporating driver-assist vehicles. Numerical insights show that the presence of driver-assist vehicles produces an aggregate homogenisation of the mean flow speed, hich may also be steered towards a suitable desired speed in such a way that optimal flows and traffic stabilisation are reached


Control of tumour growth distributions through kinetic methods

L. Preziosi, G. Toscani, M. Zanella

Journal of Theoretical Biology, to appear. (Preprint arXiv)

The mathematical modeling of tumor growth has a long history, and has been mathematically formulated in several different ways. Here we tackle the problem in the case of a continuous distribution using mathematical tools from statistical physics. To this extent, we introduce a novel kinetic model of growth which highlights the role of microscopic transitions in determining a variety of equilibrium distributions. At variance with other approaches, the mesoscopic description in terms of elementary interactions allows to design precise microscopic feedback control therapies, able to influence the natural tumor growth and to mitigate the risk factors involved in big sized tumors. We further show that under a suitable scaling both the free and controlled growth models correspond to Fokker–Planck type equations for the growth distribution with variable coefficients of diffusion and drift, whose steady solutions in the free case are given by a class of generalized Gamma densities which can be characterized by fat tails. In this scaling the feedback control produces an explicit modification of the drift operator, which is shown to strongly modify the emerging distribution for the tumor size. In particular, the size distributions in presence of therapies manifest slim tails in all growth models, which corresponds to a marked mitigation of the risk factors. Numerical results confirming the theoretical analysis are also presented.