Monte Carlo gPC methods for diffusive kinetic flocking models with uncertainties

José Antonio Carrillo, Mattia Zanella

Preprint arXiv, 2019.

In this paper we introduce and discuss numerical schemes for the approximation of kinetic equations for flocking behavior with phase transitions that incorporate uncertain quantities. This class of schemes here considered make use of a Monte Carlo approach in the phase space coupled with a stochastic Galerkin expansion in the random space. The proposed methods naturally preserve the positivity of the statistical moments of the solution and are capable to achieve high accuracy in the random space. Several tests on a kinetic alignment model with self propulsion validate the proposed methods both in the homogeneous and inhomogeneous setting, shading light on the influence of uncertainties in phase transition phenomena driven by noise such as their smoothing and confidence bands.

 

Structure preserving stochastic Galerkin methods for Fokker-Planck equations with background interactions

Mattia Zanella

Preprint arXiv, 2019.

This paper is devoted to the construction of structure preserving stochastic Galerkin schemes for Fokker-Planck type equations with uncertainties and interacting with an external distribution called the background. The proposed methods are capable to preserve physical properties in the approximation of statistical moments of the problem like nonnegativity, entropy dissipation and asymptotic behaviour of the expected solution. The introduced methods are second order accurate in the transient regimes and high order for large times. We present applications of the developed schemes to the case of fixed and dynamic background distribution for models of collective behaviour.

 

Hydrodynamic models of preference formation in multi-agent societies

Lorenzo Pareschi, Giuseppe Toscani, Andrea Tosin, Mattia Zanella

Preprint arXiv, 2018.

In this paper, we discuss the passage to hydrodynamic equations for kinetic models of opinion formation. The considered kinetic models feature an opinion density depending on an additional microscopic variable, identified with the personal preference. This variable describes an opinion-driven polarisation process, leading finally to a choice among some possible options, as it happens e.g. in referendums or elections. Like in the kinetic theory of rarefied gases, the derivation of hydrodynamic equations is essentially based on the computation of the local equilibrium distribution of the opinions from the underlying kinetic model. Several numerical examples validate the resulting model, shedding light on the crucial role played by the distinction between opinion and preference formation on the choice processes in multi-agent societies.

Kinetic-controlled hydrodynamics for traffic models with driver-assist vehicles

Andrea Tosin, Mattia Zanella

 Preprint arXiv, 2018.

We develop a hierarchical description of traffic flow control by means of driver-assist vehicles aimed at the mitigation of speed-dependent road risk factors. Microscopic feedback control strategies are designed at the level of vehicle-to-vehicle interactions and then upscaled to the global flow via a kinetic approach based on a Boltzmann-type equation. Then first and second order hydrodynamic traffic models, which naturally embed the microscopic control strategies, are consistently derived from the kinetic-controlled framework via suitable closure methods. Several numerical examples illustrate the effectiveness of such a hierarchical approach at the various scales.

 

Opinion modeling on social media and marketing aspects

Giuseppe Toscani, Andrea Tosin, Mattia Zanella

Physical Review E, 98(2): 022315, 2018. (Preprint arXiv)

We introduce and discuss kinetic models of opinion formation on social networks in which the distribution function depends on both the opinion and the connectivity of the agents. The opinion formation model is subsequently coupled with a kinetic model describing the spreading of popularity of a product on the web through a social network. Numerical experiments on the underlying kinetic models show a good qualitative agreement with some measured trends of hashtags on social media websites and illustrate how companies can take advantage of the network structure to obtain at best the advertisement of their products.

Related popularization article for the Italian blog Madd:Math!: La popolarità delle opinioni

 

 

Boltzmann games in heterogeneous consensus dynamics

Giacomo Albi, Lorenzo Pareschi, Mattia Zanella

Journal of Statistical Physics, to appear. (Preprint arXiv)

We consider a constrained hierarchical opinion dynamics in the case of leaders’ competition and with complete information among leaders. Each leaders’ group tries to drive the followers’ opinion towards a desired state accordingly to a specific strategy. By using the Boltzmann-type control approach we analyze the best-reply strategy for each leaders’ population. Derivation of the corresponding Fokker-Planck model permits to investigate the asymptotic behaviour of the solution. Heterogeneous followers populations are then considered where the effect of knowledge impacts the leaders’ credibility and modifies the outcome of the leaders’ competition.

Particle based gPC methods for mean-field models of swarming with uncertainty

José Antonio Carrillo, Lorenzo Pareschi, Mattia Zanella.

Communications in Computational Physics, 25(2): 508-531, 2019. (Preprint arXiv)

In this work we focus on the construction of numerical schemes for the approximation of stochastic mean–field equations which preserve the nonnegativity of the solution. The method here developed makes use of a mean-field Monte Carlo method in the physical variables combined with a generalized Polynomial Chaos (gPC) expansion in the random space. In contrast to a direct application of stochastic-Galerkin methods, which are highly accurate but lead to the loss of positivity, the proposed schemes are capable to achieve high accuracy in the random space without loosing nonnegativity of the solution. Several applications of the schemes to mean-field models of collective behavior are reported.

 

See more videos on my YouTube channel.

Hybrid stochastic kinetic description of two-dimensional traffic dynamics

Michael Herty, Andrea Tosin, Giuseppe Visconti, Mattia Zanella

SIAM Journal on Applied Mathematics, 78(5): 2737–2762, 2018. (Preprint arXiv)

In this work we present a two-dimensional kinetic traffic model which takes into account speed changes both when vehicles interact along the road lanes and when they change lane. Assuming that lane changes are less frequent than interactions along the same lane and considering that their mathematical description can be done up to some uncertainty in the model parameters, we derive a hybrid stochastic Fokker-Planck-Boltzmann equation in the quasi-invariant interaction limit. By means of suitable numerical methods, precisely structure preserving and direct Monte Carlo schemes, we use this equation to compute theoretical speed-density diagrams of traffic both along and across the lanes, including estimates of the data dispersion, and validate them against real data.

Control strategies for road risk mitigation in kinetic traffic modelling

Andrea Tosin, Mattia Zanella. 

IFAC-PapersOnLine, 51(9): 67-72, 2018. (Preprint arXiv)

In this paper we present a Boltzmann-type kinetic approach to the modelling of road traffic, which includes control strategies at the level of microscopic binary interactions aimed at the mitigation of speed-dependent road risk factors. Such a description is meant to mimic a system of driver-assist vehicles, which by responding locally to the actions of their drivers can impact on the large-scale traffic dynamics, including those related to the collective road risk and safety.

Boltzmann-type models with uncertain binary interactions

Andrea Tosin, Mattia Zanella.

Communications in Mathematical Sciences, 16(4): 963-985, 2018. (Preprint arXiv)

In this paper we study binary interaction schemes with uncertain parameters for a general class of Boltzmann-type equations with applications in classical gas and aggregation dynamics. We consider deterministic (i.e., a priori averaged) and stochastic kinetic models, corresponding to different ways of understanding the role of uncertainty in the system dynamics, and compare some thermodynamic quantities of interest, such as the mean and the energy, which characterise the asymptotic trends. Furthermore, via suitable scaling techniques we derive the corresponding deterministic and stochastic Fokker-Planck equations in order to gain more detailed insights into the respective asymptotic distributions. We also provide numerical evidences of the trends estimated theoretically by resorting to recently introduced structure preserving uncertainty quantification methods.